Publications (Selected):

 

Books:

  1. Chang, D.C., Tasaki, I., Adelman, W.J., Jr., and Leuchtag, H.R. (Eds). 1983. Structure and Function in Excitable Cells, Plenum Publishing Co., New York. (499 pages).

  2. Chang, D.C., Chassy, B.M., Saunders, J.A., and Sowers, A.E. (Eds). 1992. Guide to Electroporation and Electrofusion, Academic Press, San Diego. (581 pages).

  3. Chang, D. C., 2014. Morals Wars: The Challenge of Modern China on Values 道德战争:现代中国在价值观上的挑战. China Development Press, Beijing. (331 pages).

  4. 张东才, 王一, 王国彝, and 陈炯林, 2021. What is the Origin of Our Material World? 《我们的物质世界从何而来?》. China Youth Publishing House 中国青年出版社 , Beijing.

  5. Chang, D.C., 2024. On the Wave Nature of Matter: A New Approach to Reconciling Quantum Mechanics and Relativity, Springer Nature, Switzerland (344 pages).

Journal Articles & Book chapters (Selected):

  1. Chang, D.C., Hazlewood, C.F., Nichols, B.L., and Rorschach, H.E. 1972. Spin-echo studies on cellular water. Nature 235:170-171.

  2. Hazlewood, C.F., Chang, D.C., Medina, D., Cleveland, G., and Nichols, B.L. 1972. Distinction between the preneoplastic and neoplastic state of murine mammary glands. Proc. Natl. Acad. Sci. USA 69:1478-1480.

  3. Chang, D.C., Rorschach, H.E., Nichols, B.L., and Hazlewood, C.F. 1973. Implications of diffusion coefficient measurements for the structure of cellular water. Annals N.Y. Acad. Sci. 204:434-443.

  4. Hazlewood, C.F., Chang, D.C., Nichols, B.L., and Woessner, D.E. 1974. NMR Transverse relaxation times of water protons in skeletal muscle. Biophys. J. 14:583-606.

  5. Chang, D.C. and Hazlewood, C.F. 1975. Comments on PMR studies of tissue water. J. Mag. Res. 18:550-554.

  6. Medina, D., Hazlewood, C.F., Cleveland, G.G., Chang, D.C., Spjut, H.J., and Moyers, R. 1975. Nuclear magnetic resonance studies on human breast dysplasias and neoplasms. J. Nat. Cancer Inst. 54:813-818.

  7. Beall, P.T., Medina, D., Chang, D.C., Seitz, P.K., and Hazlewood, C.F. 1977. Systemic effect of benign and malignant mammary tumors on the spin-lattice relaxation time of water protons in mouse serum. J. Nat. Cancer Inst. 59(5):1431‑1433.

  8. Chang, D.C. and Woessner, D.E. 1977. "Bound water" in barnacle muscle as indicated in NMR studies. Science 198:1180-1181.

  9. Chang, D.C. and Woessner, D.E. 1978. Spin echo study of Na23 relaxation in skeletal muscle: Evidence of sodium ion binding inside a biological cell. J. Mag. Res. 30:185‑191.

  10. Kasturi, S.R., Hazlewood, C.F., and Chang, D.C. 1980. Study of anisotropy in NMR relaxation times of water protons in skeletal muscle. Biophys. J. 30:369-382.

  11. Michael, L., Seitz, P., Wood, J.M., Chang, D.C., Hazlewood, C.F., and Entman, M. 1980. Mitochondrial water in myocardial ischemia:  Investigation with nuclear magnetic resonance. Science 208:1267-1269.

  12. Beall, P.T., Brinkley, B.R., Chang, D.C., and Hazlewood, C.F. 1982. Microtubule complexes correlated with growth rate and water proton relaxation times in human breast cancer cells. Cancer Res. 42:4124-4130.

  13. Chang, D.C. 1983. Dependence of cellular potential on ionic concentrations:  Data supporting a modification of the constant field equation. Biophys. J. 43:149-156.

  14. Chang, D.C. and Liu, J. 1985. A comparative study of the effects of tetrodotoxin and the removal of external Na+ on the resting potential:  Evidence of separate pathways for the resting and excitable Na currents in squid axon. Cell Molec. Neurobiol. 5:311-320.

  15. Chang, D.C. 1986. Axonal transport and the movement of 45Ca inside the giant axon of squid. Brain Res. 367:319-322.

  16. Chang, D.C. and Tasaki, I. 1986. Ultrastructure of the squid axon membrane as revealed by freeze-fracture electron microscopy. Cell Molec. Neurobiol. 6:43-53.

  17. Chang, D.C. 1986. Is the K permeability of the resting membrane controlled by the excitable K channel? Biophys J. 50:1095-1100.

  18. Fong, C.N. and Chang, D.C. 1987. K+-selective microelectrode study of internally dialysed squid giant axons. Biophys J. 53:893-897.

  19. Chang, D.C. 1988. Is the delayed rectifier the major pathway for resting K current?  Biophys J. 54:971-972.

  20. Chang, D.C. 1989. Cell poration and cell fusion using an oscillating electric field. Biophys. J. 56:641-652.

  21. Chang, D.C. 1989. Cell fusion and cell poration by pulsed radio-frequency electric fields. In: Electroporation and Electrofusion in Cell Biology. (E. Neumann, A.E. Sowers, and C.A. Jordan, Eds), Plenum Press Co., New York.

  22. Chang, D.C. and Reese, T.S. 1990. Changes of membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys. J. 58:1-12.

  23. Zheng, Q. and Chang, D.C. 1990. Dynamic changes of microtubule and actin structures in CV-1 cells during electrofusion. Cell Motil. Cytoskel. 17:345-355.

  24. Zheng, Q. and Chang, D.C. 1991. High-efficiency gene transfection by in situ electroporation of cultured cell. Biophys. Biochim. Acta 1088:104-110.

  25. Chang, D.C., Gao, P.Q. and Maxwell, B.L. 1991. High efficiency gene transfection by electroporation using a radio-frequency electric field. Biophys. Biochim. Acta 1992:153-160.

  26. Zheng, Q. and Chang, D.C. 1991. Reorganization of Cytoplasmic Structures During Cell Fusion. J. Cell Sci. 100:431-442.

  27. Chang, D.C. 1992. Structure and dynamics of electric field-induced membrane pores as revealed by rapid-freezing electron microscopy. In: Guide to Electroporation and Electrofusion, ed. by Chang, D.C., Sowers, A.E., Chassy, B. and Saunders, J.A., Academic Press, San Diego. (pp.9-28).

  28. Gao, P.Q., Sims, S.H., Chang, D.C. and Deisseroth, A.B. 1993. Interferon-gamma priming effects in the activation and deactivation of ISGF3 in K562 cells. J. Biol. Chem., 268 (17): 12380-12387.

  29. Chang, D.C. and Meng, C. 1995. A localized elevation of cytosolic free calcium is associated with cytokinesis in zebrafish embryo.  J. Cell Biol. 131:1539-1545.

  30. Chang, D.C. 1996. Electroporation and electrofusion. In: The Encyclopedia of Molecular Biology and Molecular Medicine, ed. by R.A. Meyers, VCH Publishers, Weinheim, Germany. Vol. 2, pp 198-206.                                                                             

  31. Chang, D.C. 1997.  Experimental strategies in efficient transfection of mammalian cells: Electroporation. In: Methods in Molecular Biology. Vol. 62: Recombinant Gene Expression Protocols, ed. by Rocky S. Tuan, Humana Press. pp 307-318.

  32. Chang, D.C. 1997. Chapter 88: Electroporation and electrofusion, In: Cell Biology: A Laboratory Manual, ed. by D. Spector, R.Goldman and L. Leinwand, Cold Spring Harbor Laboratory Press, New York.  pp. 88.1-88.11.

  33. Li, C.J., Heim, R., Lu, P., Pu, Y.M., Tsien, R.Y. and Chang, D.C. 1999. Dynamic redistribution of calmodulin in HeLa cells during cell division as revealed by a GFP-calmodulin fusion protein technique. J Cell Sci. 112 (10):1567-1577.

  34. Li, C.J., Lu, P. and Chang, D.C. 1999. Using a GFP-labeling technique to study cell cycle-dependent distribution of calmodulin in living cells. Science in China, 42: 517-528.

  35. Chang, D.C. and Lu, P. 2000. Multiple types of calcium signals are associated with cell division in zebrafish embryo. Microscopy Res. Tech., 49 (2): 111-122.

  36. Gao, W.H., Pu Y.M., Luo, K.Q. and Chang D.C. 2001.Temporal relationship between cytochrome c release and mitochondrial swelling during UV-induced apoptosis in living HeLa cells.  J. Cell Sci. 114:2855-2862.

  37. Pu, Y.M. and Chang, D.C. 2001. Cytosolic Ca2+ Signal is involved in regulating UV-induced apoptosis in HeLa cells. Biochem. Biophys. Res. Comm. 282(1):84-89.

  38. Luo, K.Q., Yu, V.C., Pu Y.M. and Chang D.C. 2001. Application of the fluorescence resonance energy transfer method for studying the dynamics of caspase-3 activation during UV-induced apoptosis in living HeLa cells. Biochem Biophys Res Comm. 283(5):1054-1060.

  39. Pu, Y.M., Luo, K.Q. and Chang, D.C. 2002. A Ca2+ signal is found upstream of cytochrome c release during apoptosis in HeLa cells. Biochem Biophys Res Comm. 299:762-769

  40. Xu, N.H., Luo, K.Q. and Chang, D.C. 2003. Ca2+ signal blockers can inhibit M/A transition in mammalian cells by interfering with the spindle checkpoint Biochem Biophys Res Comm. 306:737-745.

  41. Luo, K.Q., Yu, V.C., Pu Y.M. and Chang D.C. 2003. Measuring dynamics of caspase-8 activation in a single living HeLa cell during TNFa-induced apoptosis. Biochem Biophys Res Comm. 304:217-222.

  42. Chang, D.C, Xu, N.H. and Luo, K.Q. 2003. Degradation of cyclin B is required for the onset of anaphase in mammalian cells. J. Biol. Chem. 278:37865-37873.

  43. Chang, D.C. 2004. Electroporation and electrofusion. In: Encyclopedia of Molecular Cell Biology and Molecular Medicine. Ed. by R.A. Meyers, Wiley-VCH Publishers, Weinheim, Germany. Vol. 4, pp.135-157.

  44. Luo, K.Q. and Chang D.C. 2004. The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region. Biochem Biophys Res Comm. 318:303-310.

  45. Chang, D.C, Zhou, L.Y. and Luo, K.Q. 2005. Using GFP and FRET technologies for studying signaling mechanisms of apoptosis in a single living cell. In: Biophotoncs-Optical Science & Engineering for 21st Century. Roeland Van Wijk and Xun Shen (Eds), Springer, New York, pp. 25-38.

  46. Zhou, L.L., Zhou, L.Y., Luo, K.Q. and Chang D.C. 2005. Smac/DIABLO and Cytochrome c are released from mitochondria through a similar mechanism during UV-induced apoptosis. Apoptosis 10:289-299.

  47. Guo, J., Pu, Y.M., Chang, D.C. 2005. Calcium signalling and apoptosis. Acta Biophys. Sinica. 21:1-18. (Invited review)

  48. Tian, H., Ip, L., Luo, H., Chang, D.C. and Luo, K.Q. 2007. A high throughput drug screen based on fluorescence resonance energy transfer (FRET) for anti-cancer activity of compounds from herbal medicine. British J. Pharm. 150:321-334.

  49. He, H., Chang, D.C. and Lee, Y.K. 2007. Using a micro electroporation chip to determine the optimal physical parameters in the uptake of biomolecules in HeLa cells. Bioelectrochemistry, 70(2):363-368.

  50. Chang, D.C. 2007. Using biophotonics to study signaling mechanisms in a single living cell. Intl J Mod Phys B, 21 (23/24):4091-4103. http://dx.doi.org/10.1142/S0217979207045268

  51. Xu, N.H. and Chang, D.C. 2007. Different thresholds of MPF inactivation are responsible for controlling different mitotic events in mammalian cell division. Cell Cycle, 6(13):1639-1645.

  52. Zhou L.Y. and Chang D.C. 2008. The dynamic process of Bax/Bak aggregation responsible for releasing mitochondrial proteins during apoptosis. J. Cell Science 121(13):2186-96.

  53. Yin, Y., Yu, V., Zhu, G. and Chang, D.C. 2008. SET8 plays a role in controlling G1/S transition by blocking lysine acetylation in histone through binding to H4 N-terminal tail. Cell Cycle, 7(10):1423-32.

  54. Zhou L, Chan WK, Xu N, Xiao K, Luo H, Luo KQ, Chang DC. 2008. Tanshinone IIA, an isolated compound from Salvia miltiorrhiza Bunge, induces apoptosis in HeLa cells through mitotic arrest. Life Sci. 83(11-12):394-403.

  55. Lao Y, Chang DC. 2008. Mobilization of Ca2+ from endoplasmic reticulum to mitochondria plays a positive role in the early stage of UV- or TNFalpha-induced apoptosis. Biochem Biophys Res Commun. 373(1):42-7.

  56. Guo, J., Lao, Y. and Chang, DC. 2009. Calcium and apoptosis. In: Handbook of Neurochemistry and Molecular Neurobiology---Neural Signaling Mechanisms, Ed: Katsuhiko Mikoshiba., published by Springer. pp.597-622. (Invited review)

  57. Chang, D.C. 2013. A Classical Approach to the Modeling of Quantum Mass. J. Modern Physics, 4: 21-30. http://doi.org/10.4236/jmp.2013.411A1004

  58. Chang, D. C. & Lee, Y. 2015. Study on the physical basis of wave-particle duality: Modelling the vacuum as a continuous mechanical medium. J. Modern Physics, 6, 1058-1070. http://dx.doi.org/10.4236/jmp.2015.68110

  59. Chang, D.C. 2016. Why Energy and Mass Can Be Converted between Each Other? A New Perspective Based on a Matter Wave Model. J. Modern Physics, 7, 395-403.  http://dx.doi.org/10.4236/jmp.2016.74040

  60. Xiao K, Zhao W, Zhou L, Chang DC. 2016. Alpha 5/6 helix domains together with N-terminus determine the apoptotic potency of the Bcl-2 family proteins. Apoptosis; 21(11): 1214-1226.

  61. Chang, D.C. 2016, What Is Rest Mass in the Wave-Particle Duality? A Proposed Model, arXiv: physics/0404044v2. Link: https://arxiv.org/abs/physics/0404044v2

  62. Chang, D.C. 2017, On the Wave Nature of Matter, arXiv: physics/0505010v2. Link: https://arxiv.org/abs/physics/0505010v2

  63. Chang D. C. 2017. Is there a resting frame in the universe? A proposed experimental test based on a precise measurement of particle mass Euro. Phys. J. Plus, 132: 140. DOI: 10.1140/epjp/i2017-11402-4. Link: http://rdcu.be/qkRL

  64. Chang D. C. 2017. Physical interpretation of the Planck’s constant based on the Maxwell theory Chin. Phys. B, 26, 040301.

  65. Chang, D.C. 2018. A New Interpretation on the Non-Newtonian Properties of Particle Mass. Journal of Modern Physics , 9, 215-240. https://doi.org/10.4236/jmp.2018.92015

  66. Chang, D.C. 2018.  A quantum mechanical interpretation of gravitational redshift of electromagnetic wave. Optik. 174: 636–641. doi:10.1016/j.ijleo.2018.08.127

  67. Chang, D. C. 2020. A quantum interpretation of the physical basis of mass–energy equivalence. Modern Physics Letters B, 203002. doi:10.1142/S0217984920300021

  68. Chang, D. C. 2021. Review on the physical basis of wave-particle duality: Conceptual connection between quantum mechanics and the Maxwell theory. Modern Physics Letters B, 35(13) 2130004. https://doi.org/10.1142/S0217984921300040

  69. Chang, D. C. 2022. A quantum view of photon gravity: The gravitational mass of photon and its implications on previous experimental tests of general relativity. Mod. Phys. Lett. B, 36, 2250179. https://doi.org/10.1142/S0217984922501792